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Abstract. Many species of plants and animals associated with grasslands are rare or declining due to
habitat loss and degradation. Although grassland plants and insects evolved in the context of both grazing
and fire, the appropriate use of grazing and fire has been debated among those concerned with protecting
insect communities. We established an experiment to test insect responses to three grassland management
treatments: (1) patch-burn graze (burning of spatially distinct patches and free access by cattle), (2) graze-
and-burn (burning of entire tract with free access by cattle), and (3) burn-only. Because we expected that
land-use legacies could also affect insect abundance and diversity, we evaluated effects of time since fire,
grazing history, remnant history (remnant or reconstructed grassland) and pre-treatment vegetation
characteristics, which were assumed to be a legacy of prior land-use. Butterflies (Lepidoptera), ants
(Hymenoptera: Formicidae), and leaf beetles (Coleoptera: Chrysomelidae) were surveyed for three years to
compare their responses to each of these treatments as measured by abundance, richness and species
diversity. Each of these taxa is relatively diverse and was expected to have the potential to have strong
negative responses to grazing and burning, but we predicted more positive responses to patch-burn
grazing. Our results showed that land-use legacies affected insect abundance, richness and diversity, but
treatments did not. Ant abundance was lower in tracts with a history of heavy grazing. Ant species
richness was positively associated with pre-treatment time since fire and vegetation height and negatively
associated with pre-treatment proportion native plant cover. Butterfly abundance was positively associated
with pre-treatment litter cover. Leaf beetle diversity was positively associated with pre-treatment native
plant cover, and leaf beetle abundance was negatively associated with time since fire. Our results indicate
that land-use legacies can exert more influence on grassland insect community composition than current
management, but the particular aspects of these land-use legacies that are important vary across insect
taxa. The implications of these finding are that (1) land-use legacies should garner more attention in
grassland management and (2) conservation of grassland insect communities will be improved by taxon-
specific analysis of land-use legacy variables.
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INTRODUCTION

Managing and restoring grassland ecosystems
for insect communities has been a topic of heated
debate for the past few decades, and this is
particularly true in the tallgrass prairie ecoregion
of the U.S. The use of fire is contested among
those concerned with protecting insect commu-
nities (Swengel 1998, Panzer and Schwartz 2000,
Cook and Holt 2006), and concerns have been
raised as to the compatibility of burning smaller
grassland tracts relative to the conservation of
insect populations within these tracts (Panzer
2002). Burning can greatly influence the pres-
ence-absence of arthropod species on a particular
grassland tract, and species differ in their
tolerances for fire (Warren et al. 1987, Swengel
1996). In addition, the time since fire can
influence the species present (Reed 1997). Many
insect species decline immediately after a burn
(Swengel 2001) while other species increase
(Gibson et al. 1993, Larsen and Work 2003,
Moranz 2010), and the trajectory of abundance
relative to time since burn can vary among
species even within the same taxonomic group
(Vogel et al. 2010).

Grazing, like fire, can affect the species
abundance and diversity of grassland fauna
(Andresen et al. 1990, Sutter and Ritchison
2005, Warui et al. 2005) and flora (Towne et al.
2005), and controversies have ensued regarding
the potential impacts on insects. Grazing some-
times reduces grassland insect diversity (e.g.,
Stoner and Joern 2004), even in areas where it has
little effect on the plant community (Milchunas et
al. 1998), yet in other locations increases insect
species richness and Shannon diversity (Joern
2005). The intensity of grazing can influence the
direction of the insect response. For example,
insect species richness was greater in grasslands
with low-intensity grazing than those with high-
intensity grazing (Kruess and Tscharntke 2002).
Ants have been less extensively studied in
grasslands, but in Argentine subtropical forest,
ant community composition varied along a
gradient of grazing intensity (Bestelmeyer and
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Wiens 1996). Ant species were distributed based
on their preference for litter versus bare ground;
both of these variables were affected by grazing,
but can also be altered by burning.

Patch-burn grazing is a management approach
that combines both fire and grazing and has
potential for insect conservation because it
creates heterogeneity in both the spatial and
temporal patterns of grazing and burning (Fuh-
lendorf and Engle 2001, Fuhlendorf et al. 2009).
Whereas uniform application of either grazing or
fire can simplify the landscape, different levels of
grazing creates habitat heterogeneity which can
support a more diverse set of invertebrate species
(Tscharntke and Greiler 1995, Swengel 2001).
Patch-burn grazing involves subdividing a pas-
ture into sections which are burned sequentially
over multiple years. Large ungulates focus their
grazing on the recently burned patches (Cop-
pedge and Shaw 1998, Vermeire et al. 2004),
creating a mosaic of (1) heavily grazed/recently
burned patches, (2) patches that were burned six
to 18 months earlier and are dominated by forbs
after the ungulates have moved on to more
recently burned patches, and (3) patches domi-
nated by grass and senesced vegetation. Engle et
al. (2008) found that the increased habitat
heterogeneity generated by patch-burn grazing
was reflected in increased heterogeneity of insect
biomass compared to pastures under traditional
homogeneity management.

However, in addition to current management,
many grasslands are influenced by legacies of
prior land-use (Burke et al. 1989, Trimble 1999).
Plowing, grazing, and fire can leave immediate
effects as well as enduring consequences on
ecosystem structure and function for centuries
after the processes have been operative (Foster et
al. 2003). Land-use legacies can be measured via
abiotic properties of the ecosystem (e.g., soil
carbon, nitrogen content, soil compaction), as
well as biotic components (e.g., current plant or
animal community composition). It is often
difficult to determine the history of land use,
but this history can be important when evaluat-
ing grassland restoration success.
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To better understand the responses of inverte-
brate communities to fire and/or grazing, a
variety of investigators have quantified inverte-
brate community responses before and after
disturbances (Nekola 2002, Larsen and Work
2003, Engle et al. 2008, Doxon et al. 2011). Due to
taxonomic challenges, these responses are often
quantified at the order or family level. Although
these assessments provide important informa-
tion, the interpretation of the results can be
challenging because of the diversity of life history
traits within a family (which may include
herbivores, predators, or decomposers and spe-
cies with life stages that include belowground as
well as aboveground activity). Alternatively,
much of the research that has been done at the
species level to assess responses has focused on a
single family or order.

Here we describe the results of an experimen-
tal grassland management project that compared
abundance, species richness, and diversity re-
sponses of ants (Order Hymenoptera, Family
Formicidae), butterflies (Order Lepidoptera), and
leaf beetles (Order Coleoptera, Family Chryso-
melidae) to three grassland treatments: burn-
only, graze-and-burn, and patch-burn graze.
These taxa are relatively diverse in grassland
ecosystems and were expected to respond
strongly to grazing, burning, or the combination
thereof. Trager (1998) argues that the sheer
biomass of ants compared with other insect
families justifies research concerning ants. Addi-
tionally, ants often serve as ecosystem engineers
by altering habitat through burrowing and
foraging (Jones et al. 1994, Wagner et al. 2004)
and have been shown to respond to anthropo-
genic change across a wide range of habitats
(e.g., Majer and Nichols 1998, Bestelmeyer and
Wiens 2001). Butterflies are excellent subjects for
ecological management studies because they are
relatively easy to identify in the field and can be
highly responsive to disturbance via direct as
well as indirect effects (Waltz and Covington
2004, Nelson 2007). Chrysomelid (leaf) beetles
have been less extensively examined in grassland
ecosystems, but are a diverse group of herbi-
vores, and, like butterflies, many species have
specialized associations with host plants (Clark et
al. 2004, Barney and Hall 2011).

All three of these insect taxa could be expected
to have strong responses to burning, grazing, and
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vegetative composition and structure due to their
dependence on vegetation for food and habitat as
well as the importance of bare ground or litter for
nesting and overwintering habitat. In addition,
there is value in cross-taxonomic comparison of
these responses to determine whether a broader
group of insects is responding similarly to
disturbance patterns and/or habitat characteris-
tics. With that in mind, we tested for effects of
treatment (burn-only, graze-and-burn, and patch-
burn graze) on abundance, richness, and diver-
sity of each taxon, while simultaneously testing
for effects of pre-treatment covariates, including
land-use history variables (grazing history, rem-
nant history [i.e. remnant versus reconstructed
grassland]), fire history, and pre-treatment vege-
tation variables (i.e., composition and structure).
The vegetation present at the beginning of our
study is in fact the legacy of prior land use
(McGranahan 2008, McGranahan 2011) and was
expected to affect insect community richness and
diversity patterns. We made the following
predictions:

1. Patch-burn grazed tracts will have higher
species richness and diversity compared to
tracts managed using more traditional
techniques (i.e.,, graze-and-burn and burn-
only tracts) due to non-burned refugia,
spatial heterogeneity of grazing pressure,
and increased structural heterogeneity of
the vegetation.

2. Prior land use (plowing, heavy grazing by
cattle, and burning) will have left legacies
that affect abundance, richness, and diver-
sity of each of the three taxa (ants, leaf
beetles and butterflies). Specifically, tracts
that were plowed and later reconstructed,
and tracts with a history of heavy grazing
will have lower richness and diversity than
grassland remnants and those that lacked a
history of heavy grazing. Tracts with longer
pre-treatment time since fire will have
higher diversity and abundance of all three
insect taxa.

3. Variation in pre-treatment vegetation char-
acteristics (e.g., proportion native plant
cover) that are legacies of land-use history
will affect abundance and diversity of each
of the three insect taxa, but these patterns
may vary across the taxonomic groups
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based upon habitat preferences for nest sites
(ants), overwintering sites (butterflies), and
species-specific plant use (all three taxa).

METHODS

Study tracts

In 2006, we selected 12 tracts for a controlled
experiment to test the effects of fire and grazing
treatments on vegetation structure, plant com-
munity composition, and terrestrial insect com-
munity composition in the Grand River
Grasslands of southern Iowa and northern
Missouri, USA (Appendix A). The tracts, which
ranged in size from 15 to 34 ha, occurred within a
mixture of private and public grasslands. They
were allocated to one of three treatments: (1)
patch-burn graze (burning of spatially distinct
patches and free access by cattle, N = 4), (2)
graze-and-burn (burning of entire tract with free
access by cattle, N = 4), and (3) burn-only
(burning of entire tract with no grazing, N = 4).
From 2007 through 2009, tracts receiving the first
two treatments were stocked with cattle at about
3.4 animal unit months per ha between May 1
and October 1. Each tract was divided into three
patches of approximate equal area. In patch-burn
graze tracts, natural topographic features such as
waterways, drainages, and ridgetops were used
as patch boundaries to the extent possible. Each
year, a different patch within each patch-burn
graze tract was burned in early spring (mid-
March). Tracts in the burn-only and graze-and-
burn treatments were burned in their entirety in
spring 2009, except for one burn-only tract,
which was burned in spring 2008. Thus, the
fire-return interval was the same across all three
treatments.

Land-use history was classified in terms of
remnant history as well as fire and grazing
history. Remnants were defined as grassland
tracts that had never been plowed, whereas
reconstructed grasslands were planted from seed
in bare soil. Pre-treatment time since fire denoted
the number of years since fire had been applied
to each tract as of 2006 (values ranged from 0 to
15 years). Grazing history was classified as either
having a history of severe grazing or not.
Although some of the tracts had long histories
of severe grazing, we defined our pre-treatment
legacies in terms of the previous three years
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(2003-2005) for consistency in this analysis. The
land-use history of each tract was determined by
interviewing landowners and governmental land
managers who owned/managed the tracts.

Vegetation sampling

Pre-treatment vegetation variables were used
as covariates to enable us to separate treatment
from legacy effects. Pre-treatment vegetation
data were collected in 2006 at the transect-level
to describe plant community composition, and at
the patch-level to describe plant composition and
structure. Plant community composition was
sampled twice during the summer season and
measured at the species level in two permanent-
ly-marked Whittaker plots (Stohlgren et al. 1995)
per patch (i.e., N =6 Whittaker plots per tract) as
described in McGranahan (2011). The canopy
cover value for each species was the maximum
canopy cover value observed. From Whittaker
plot data, we calculated the proportion of native
plant canopy cover in each patch, using the
following equation: proportion native plant
cover = total native plant canopy cover/(total
native plant canopy cover + total exotic plant
canopy cover).

During July of 2006 we measured pre-treat-
ment plant functional group composition and
vegetation structure in thirty 0.5-m” quadrats
that were placed systematically within each
patch as described in Pillsbury et al. (2011).
Variables measured included Robel vegetation
height (Robel et al. 1970), percent cover of litter
and bare ground, and canopy cover of warm-
season grasses, cool-season grasses, non-legumi-
nous forbs, leguminous forbs, woody plants and
Lolium arundinaceum (Schreb.) S.J. Darbyshire
(tall fescue). Cover measurements used the
following cover classes: 0-5%, 5-25%, 25-50%,
50-75%, 75-95%, 95-100% (Daubenmire 1959).
Center points of each cover class were averaged
within each patch (N = 30 quadrats/patch) and
tract (N = 90 quadrats/tract).

Sweep net sampling

Sweep net surveys of terrestrial invertebrates
were conducted in each tract twice per year
during the periods of major emergence (June to
early July and mid-July to early August) from
2007-2009. Surveys were conducted along 50-m
transects parallel to the eastern edge of each
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Whittaker plot with a starting point 10 m east of
the north-center coordinate of each plot, resulting
in 12 samples per tract per year (2 transects per
patch X 3 patches per tract X 2 sampling periods
per year). Surveys were conducted between
0930-1830 h when temperatures were between
21°C and 35°C, sustained winds were below 16
km/hr, and the sun was not obscured by clouds.
Surveys were conducted by a single individual
walking south along each transect at a constant
pace, holding a net with both hands with the net
handle directed forward and the net opening
pointed sideways. The net was swept at a
constant pace from side to side 40 times, where
one sweep includes the complete back and forth
swing in both directions, as the individual
traveled the transect. Completing 40 sweeps
was preferred to traveling exactly 50 m to
maintain constant effort. Insects were carefully
transferred from the net to a plastic zip lock bag
at the completion of each transect and frozen
until they could be sorted. Due to the greater
than expected labor costs of identifying insects,
only samples from each patch’s northern transect
were identified, resulting in six identified sam-
ples per tract per year. Samples from each patch’s
southern transect remain frozen for future
processing if funding permits.

Sweep net samples were sorted to family level,
preserved in ethanol in vials categorized by tract,
replicate, and date, and stored until they could be
later identified to species. L. Winkler, with the
assistance of J. Trager, identified ant species. R.
Barney identified the chrysomelid leaf beetles.

Butterfly sampling

Butterflies were sampled via Pollard walk
transects (Pollard and Yates 1993) twice per year
from 2007-2009. Sampling was spaced temporal-
ly to cover the major emergence periods (June to
early July and mid-July to early August). One 100
X 5-m transect was established parallel to the
west side of each Whittaker vegetation sampling
plot, with a starting point 10 m west of the north-
center coordinate of the plot, resulting in 12
samples per tract per year (2 transects per patch
X 3 patches per tract X 2 sampling periods per
year). During butterfly sampling, an observer
walked the transect at a steady pace (~10 m/min)
and recorded data on butterflies seen within the 5
m X 5 m area in front of the observer (extending
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2.5 m to each side of the transect, and 5 m
forward). Each butterfly was identified to the
species level. Specimens that could not be
identified in the field were captured and identi-
fied in our lab. Surveys were conducted between
0930-1830 h when temperatures were between
21°C and 35°C, sustained winds were below 16
km/hr, and the sun was not obscured by clouds.

Data analysis

Insect count data from the June and July
sampling periods were added together, so that
a single value of each response variable was
obtained for each transect each year. For each of
three major taxa, we calculated four response
variables: abundance, species richness, Shannon
diversity, and Simpson diversity. Abundance was
defined here as the total number of individuals of
each taxonomic group (butterflies, ants, or leaf
beetles) found per transect. Species richness was
calculated as the number of unique species found
per transect. Shannon diversity was calculated as
H = = (pidn(p;)) and Simpson diversity was
calculated as D = 1 — > p;2, where p; is the
percentage of ith species and In is the natural log.
Shannon diversity is a measure of species
evenness, while Simpson diversity is a measure
of species dominance (Magurran 2004). Due to
the difference in total samples available, for
butterflies, response variables were calculated
for two transects per patch per year, whereas for
ants and leaf beetles, response variables were
calculated for one transect per patch per year.

Univariate data analysis.—We performed mixed
model analysis of covariance using the statistical
software package SAS version 9.2 (SAS Institute
2008) to test for effects of treatment and year on
response variables for our three focal taxa after
accounting for the influence of pre-treatment
covariates. We viewed plots of residuals versus
fitted values. If residuals failed to exhibit an
approximately normal distribution, analyses were
re-run with transformed response variables. Val-
ues of pre-treatment covariates were obtained in
2006. Before performing analysis of covariance,
we reviewed the grassland insect literature to
select a list of potential variables to serve as
covariates. Then, we tested for correlations among
those vegetation variables; when correlation coef-
ficients were 0.70 or greater, the variable more
likely to be associated with insect density (based
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on our literature review) was retained as a
covariate whereas the other was excluded to
reduce multicollinearity. Pre-treatment covariates
entered in all analyses of covariance included:
grazing history, remnant history, time since fire,
proportion of native plant cover, forb cover, Robel
vegetation height, litter cover, and the cover of
bare ground. Backward elimination was per-
formed to remove insignificant covariates from
each analysis of covariance, with oo = 0.05 used as
criterion for retaining each covariate. When
analysis of covariance indicated a significant effect
of treatment, or a significant treatment by year
interaction, we used differences of least squares
means as our multiple comparison procedure.

Multivariate data analysis.—We used nonmetric
multidimensional scaling (NMDS) to describe
separately the structure of the ant, butterfly, and
leaf beetle communities. NMDS is an uncon-
strained, distance-based ordination technique in
which the distance between samples in ordina-
tion space corresponds to the similarity in
community structure among samples. Ordina-
tions were performed using VEGAN (Oksanen
2009), a package of community analysis functions
for the statistical software R (R Development
Core Team 2010). In order to avoid spurious
results, species occurring in only one transect
were not included in the ordinations. Bray-Curtis
distance was used as the measure of dissimilarity
among grassland transects.

For all ordinations, transect-level abundance
data from 2007-2009 were plotted together, i.e.,
each point on the ordination represents commu-
nity composition of a transect in a particular year.
Thus, the vectors that describe the insect
responses to vegetation variables represent the
composite response across all three years. Sub-
sequently, we tested for correlations between
ordination axis scores and values of 11 pre-
treatment vegetation variables derived from the
same Whittaker plot locations: proportion of
native plant cover, plant species richness, Robel
vegetation height, percent cover of litter and bare
ground, and canopy cover of warm-season
grasses, cool-season grasses, non-leguminous
forbs, leguminous forbs, woody plants and
Lolium arundinaceum. Vegetation variables signif-
icantly correlated with one or more ordination
axes at o < 0.05 were plotted as vectors.
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Over three years, the numbers of species and
total individuals collected were as follows: ants:
14 species and 5101 individuals; butterflies: 33
species and 2048 individuals; leaf beetles: 44
species and 1189 individuals. Fig. 1 presents
tract-level patterns of abundance (Fig. 1A),
richness (Fig. 1B), Shannon diversity (Fig. 1C),
and Simpson diversity (Fig. 1D) for each treat-
ment, whereas Fig. 2 represents tract-level
patterns of abundance and richness relative to
grazing history and remnant history (with
graphs of diversity indices omitted for simplic-
ity’s sake). However, the statistical results we
wish to emphasize are those of Table 1 because
the ANCOVA results evaluate responses of
transect-level abundance, richness, and diversity
after accounting for the influence of covariates,
which is a more accurate representation of the
responses. Grassland management treatments
had no main effects on any of the four response
variables (abundance, species richness, Shannon
diversity and Simpson diversity) measured for
each taxon, and had interactive effects (with
year) only on butterfly abundance (Table 1).
Because treatment showed no significant main
effects, we present ordinations of each of the
communities superimposed with vectors defin-
ing significant pre-treatment vegetation variables
relative to species distributions but without
designation of treatment type. Year affected
response variables for each of the three taxa.
Regarding significant year effects, we refer the
reader to Table 1 and save further mention of this
for the discussion.

Ants

Grasslands with a recent history (2003—2005) of
grazing had fewer ants (F =7.75, df =1, 10, P =
0.019), than grasslands without such a history
(Table 1, Fig. 2A). No other factors, including
remnant history (Fig. 2C) affected ant abundance
(Table 1). Ant species richness was influenced by
three pre-treatment covariates (Table 1, Fig. 2B,
D): remnant history (with remnants having
greater species richness than reconstructed grass-
lands), proportion native cover (negative corre-
lation), and Robel vegetation height (positive
correlation). Remnant grasslands had greater
Shannon diversity of ants than reconstructed
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Fig. 1. Treatments compared for (A) abundance, (B) species richness, (C) Shannon diversity, and (D) Simpson
diversity of three taxa (ants, butterflies, and leaf beetles). Means and standard errors are based on tract-level

values from 2007 through 2009.

grasslands (P = 0.002, Table 1). Three pre-
treatment covariates were positively correlated
with Shannon diversity: cover of bare ground,
Robel vegetation height, and time since fire
(Table 1). Several findings on Simpson diversity
were consistent with those obtained on Shannon
diversity: (1) ant diversity did not differ among
treatments, (2) remnants had greater ant diversi-
ty than reconstructions (P < 0.001), and (3) Robel
vegetation height was positively correlated with
ant diversity (P < 0.001). However, two unique
results were obtained using Simpson diversity.
Tracts having a recent history of heavy grazing
had lower ant diversity than tracts without that
history (P = 0.027), and proportion of native
cover was negatively correlated with ant diver-
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sity (P = 0.002).

Ordination of ant data (Fig. 3) showed that
grasslands dominated by Formica montana, the
most abundant ant species in our study (repre-
senting 81% of all ants captured), separated from
grasslands with several less dominant species
(Camponotus americanus, Formica subsericea, F.
exsectoides and Lasius alienus). The ant community
ordination was correlated with one vegetation
variable: pre-treatment Robel vegetation height
(r*=0.06, P = 0.025).

Butterflies

Treatment and year interacted to affect butter-
fly abundance (P = 0.029) (Table 1): both grazing
treatments exhibited high interannual variation
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Fig. 2. Effects of grazing history on (A) abundance and (B) species richness, and effects of remnant history on
(C) abundance and (D) species richness of three taxa (ants, butterflies, and leaf beetles). Means and standard
errors are based on tract-level values from 2007 through 2009.

in butterfly abundance (P < 0.001 for each
treatment), whereas abundance did not vary
among years in the burn-only treatment. Pre-
treatment litter cover was positively associated
with butterfly abundance (P =0.011, Table 1). No
pre-treatment covariates were associated with
butterfly species richness, or with either diversity
index (Shannon or Simpson) (Table 1, Fig. 2A-D).
Ordination of butterfly community structure
(Fig. 4) showed that three habitat specialists
(Cercyonis pegala, Lycaena hyllus and Speyeria
idalia) and one habitat generalist (Danaus plex-
ippus) were associated with grasslands having
greater pre-treatment proportion native cover (r2
—=0.41, P=0.002), forb cover (r*=0.20, P=0.008),
and woody cover (r>=0.07, P = 0.012). Species at
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the opposite end of the primary ordination axis
included two exotic, habitat-generalist species
(Thymelicus lineola and Pieris rapae) and three
native, habitat-generalist species (Cupido comyn-
tas, Colias philodice, and Papilio polyxenes) that
were associated with pre-treatment values of cool
season grass cover (r*=0.07, P = 0.06) (Fig. 4).

Leaf beetles

Pre-treatment values of time since fire were
negatively associated with leaf beetle abundance
(P = 0.01) (Table 1). Pre-treatment values of
proportion native cover were positively associat-
ed with leaf beetle species richness (P = 0.018)
and Shannon diversity (P = 0.022), whereas no
covariates were significant predictors of Simpson
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Table 1. Associations between independent variables and insect response variables.

Ants Butterflies Leaf beetles

Independent variables AB RIC SHA SIM AB RIC SHA SIM AB RIC SHA SIM
Experimental variables

Treatment

Year *3% Hk K%k 3% *3% * *3% *

Treatment X Year *
Legacy variables

Grazing history —* —*

Remnant history +* +** +*

Time since fire +* -

Proportion native cover —* —** +* +*

Forb cover

Bare ground cover +**

Litter cover +*

Robel vegetation height R S R

Notes: Legacy variables are covariate data from 2006. Response variables are based on data from 2007, 2008 and 2009, and are
abbreviated as follows: AB = abundance, RIC = species richness, SHA = Shannon diversity, SIM = Simpson diversity. Blank cell
indicates that independent variable was not a significant predictor of response variable. Asterisks indicate that independent
variable was a significant predictor of response variable: * P < 0.05, ** P < 0.01, ** P < 0.001. Plus and minus signs indicate
whether the relationship between variables was positive or negative. For the independent variable “grazing history” a minus
sign indicates that grasslands with a recent history of grazing had lower values of response variable than grasslands without a
recent history of grazing. For the independent variable “remnant history” a plus sign indicates that remnant grasslands had

higher values of response variable than grassland reconstructions.

CAAM
3
FoSU
2 -
FOEX
LAAL
@ NE
o 14 TASE
b= SOMO
z
TEAM
0 robel
FOMO MYAN
FOINMOMI
1
TEPE
-2
T T T T T T T
3 2 1 0 1 2 3
NMDS1

Fig. 3. Ant community ordination plot showing the
results of nonmetric multidimensional scaling analysis
(NMDS) of abundance data from 2007 through 2009.
The position of each species in ordination space is
indicated by a four letter abbreviation of its scientific
name (first two letters of genus followed by first two
letters of specific epithet, see Appendix B). Pre-
treatment Robel vegetation height (robel) is signifi-
cantly correlated with the ordination and is plotted as
a vector to demonstrate its relationship to ant
community composition.
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diversity. Leaf beetle community structure (Fig.
5) was correlated with pre-treatment variables
including proportion native plant cover (r> =
0.50, P = 0.013), warm season grass cover (r2 =
0.40, P=0.024), cool season grass cover (1’2 =0.26,
P = 0.038), and legume cover (r2 =017, P =
0.025). Some of the more common species of leaf
beetles (e.g., Zygogramma suturalis, Epitrix spp.,
Paria thoracica, Diabrotica barberi and D. undecim-
punctata) were widely separated in ordination
space.

DiscussioN

The results of this research show that land-use
legacies had far more influence on insect distri-
bution and abundance patterns than currently
imposed management treatments, even after
three years of treatment implementation. Our
prediction that patch-burn grazed tracts would
have higher species richness and diversity of
ants, butterflies, and leaf beetles than tracts
managed for homogeneity was not supported
by our results. In fact, this experiment showed
few effects of burning and grazing treatments on
invertebrate abundance, richness and diversity
measures. These results contrast strongly with
responses observed for grassland birds within
the same tracts (Pillsbury et al. 2011).

We propose two hypotheses to explain this
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Fig. 4. Butterfly community ordination plot showing
the results of nonmetric multidimensional scaling
analysis (NMDS) of abundance data from 2007
through 2009. The position of each species in ordina-
tion space is indicated by a four letter abbreviation of
its scientific name (first two letters of genus followed
by first two letters of specific epithet; see Appendix C).
Four pre-treatment vegetation variables significantly
correlated with the ordination are plotted as vectors to
demonstrate their relationships with butterfly commu-
nity composition: cool season grass cover (csg) woody
plant cover (woody), forb cover (forb), and proportion
of native plant cover (prop_nat).

unexpected outcome. First, for some taxa, partic-
ularly ants, legacies of previous land-use appear
to have had significant impacts on determining
local distribution and abundance. These legacies
may have diminished our ability to observe
treatment effects, and three years of these
treatments are not enough to alter differences in
abundance, diversity and composition that were
established by heavy grazing. This might be
especially so for ants, whose colonies are
perennial, often taking three or more years to
reach maturity, and thus having a longer lag
time. Heavy grazing might also have more of an
impact on ants, as colony-founding queens often
seek areas of loose, bare soil rather than
compacted soil in which to dig their incipient
nests (J. C. Trager, personal observation).

Second, patch-burn grazing failed to generate
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Fig. 5. Chrysomelid community ordination plot
showing the results of nonmetric multidimensional
scaling analysis (NMDS) of abundance data from 2007
through 2009. The position of each species in ordina-
tion space is indicated by a four letter abbreviation of
its scientific name (first two letters of genus followed
by first two letters of specific epithet; see Appendix D).
Four pre-treatment vegetation variables that are
significantly correlated with the ordination are plotted
as vectors to demonstrate their relationships with
chrysomelid community composition. These variables
are cool season grass cover (csg), legume cover
(legume), proportion of native plant cover (prop_nat)
and warm season grass cover (wsg).

among-patch heterogeneity in vegetation struc-
ture, thus vegetation structure of patch-burn
graze tracts did not differ from that of graze-
and-burn tracts (McGranahan 2011). Without the
structural heterogeneity that is so important to
insect diversity (Tscharntke and Greiler 1995),
our implementation of patch-burn grazing failed
to deliver the anticipated increase in diversity.
Elsewhere, patch-burn grazing under moderate
stocking has generated structural variation
among patches (Fuhlendorf and Engle 2004,
Winter et al., in press). In our patch-burn graze
tracts, stocking rate may have been excessive, so
that cattle were obliged to forage intensively on
all patch-types, rather than focusing on the
recently burned patches.

Our prediction that land-use legacies would
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have significant effects on insect abundance and
diversity was supported, but the patterns of
response varied across the three insect groups.
Land-use legacy variables such as grazing
history, remnant history, fire history, and pre-
treatment vegetation characteristics had numer-
ous significant effects on ants, but fewer effects
on butterfly or leaf beetle diversity or richness. In
addition, the pre-treatment vegetation variables
that were significantly correlated with insect
abundance, richness, and diversity varied across
taxonomic groups.

Ants exhibited higher richness and diversity in
remnants and tracts with higher vegetation as
compared to reconstructed grasslands and tracts
with shorter vegetation. They also had lower
Simpson diversity in tracts with a history of
grazing. We speculate that ants were more
affected by legacies in part because of the lower
complexity of the ant dataset. Over 80% of the
ants captured were Formica montana, therefore
responses of ants to predictor variables were due
in large part to a response of F. montana. F.
montana is behaviorally dominant (Henderson et
al. 1989), defending their above-ground nests
from cows as well as other ant species. They are
also numerically dominant (Trager 1998, Hen-
derson et al. 1989) in prairies of central North
America. We hypothesize that the lower richness
and diversity of ants in grassland reconstructions
is due to F. montana dominance. A lower
abundance of F. montana in 2009 may have led
to increased survival and fecundity of other ant
species, particularly opportunist species, and
thus an increase in ant diversity that year. As
grassland reconstructions age, and habitat con-
ditions become less suitable for F. montana, we
predict that ant species richness will increase as
other species colonize the reconstructions.

In contrast to ants, which are predacious and
respond to prey availability, butterfly and leaf
beetle communities of central North American
grasslands have no analogous social hierarchy of
species (and have no species that is numerically
dominant), so we expected that their responses
would be driven more by pre-treatment vegeta-
tion structure and diversity. A number of studies
have found positive correlations between inver-
tebrate diversity and plant diversity (Crisp et al.
1998, Stoner and Joern 2004), and Collinge et al.
(2003) found differences in butterfly species
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richness among grassland types. In our system,
butterfly abundance and diversity showed few
significant responses to treatment or to land-use
legacies beyond the positive association with pre-
treatment litter cover. This legacy effect makes
sense given that litter is an especially important
habitat component for butterflies (Vogel et al.
2010). However, ordination provided additional
insights by showing a clear separation between
habitat-specialist species and habitat-generalist
species. Of the four species (Cercyonis pegala,
Danaus plexippus, Lycaena hyllus, and Speyeria
idalia) associated with tracts having higher pre-
treatment proportion of native cover and forb
cover, all except D. plexippus have been desig-
nated as habitat specialists (i.e., grassland spe-
cialists) in prior studies (e.g., Panzer et al. 1995,
Shepherd and Debinski 2005, Vogel et al. 2010).
And although D. plexippus uses a wide variety of
habitats when considering its entire range, we
suspect its association with higher pre-treatment
proportion of native plant cover is due to its
dependence on native forbs (Asclepias spp.) as
hosts.

Leaf beetles showed what might be the most
predictable response of a group of host plant
specialist insects to grassland characteristics. In
contrast to ants, leaf beetles responded positively
in terms of species richness and Shannon
diversity to the pre-treatment proportion of
native plant cover. We were surprised that leaf
beetle richness and diversity did not respond to
pre-treatment time since fire, but Hall and
Barney (2011) found no significant effect of
prescribed burns on species richness of leaf
beetles or vegetation in several state nature
preserves in Kentucky. Leaf beetle abundance
did respond negatively to increased time since
fire. This may be linked to the beneficial effects of
fire in reducing dead plant biomass and promot-
ing new plant growth (Glenn-Lewin et al. 1990)
which can enhance food quality and availability
for herbivorous insects (Tscharntke and Greiler
1995).

There were strong effects of year on all three
taxa, which is not surprising, as populations of
many insect species fluctuate widely from year to
year (Andrewartha and Birch 1954). However,
the three taxa were not synchronous in their
fluctuations in abundance, richness and diversity
(e.g., while butterfly abundance was high in 2008,
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leaf beetle abundance was quite low). Some of
the common butterfly species (Colias philodice and
Cupido comyntas) suffered large population de-
clines in 2009 (R. A. Moranz, personal observation).
Initially, we suspected that fire was the cause, as
most of our burn-only tracts and all of our graze-
and-burn tracts were burned spring 2009. How-
ever, C. philodice and C. comyntas declined
irrespective of treatment, including responses in
tracts that were patch-burn grazed (thus receive
approximately the same amount of prescribed
fire each year). This suggests that some other
factor (bad winter weather, disease outbreak,
etc.) operating at the regional level was the cause
of the declines.

In summary, land-use legacies and their
associated pre-treatment vegetation conditions
had significant effects on ants, butterflies and leaf
beetles, but they did not have equivalent effects
across taxa as measured by abundance, richness,
or diversity. This is an important finding because
managers might otherwise assume that all insects
would respond in similar ways to land-use
legacies. Others have found that cross-taxonomic
comparisons can reveal disparities in richness
patterns relative to habitat types or locations of
diversity hotspots, meaning that one taxon
cannot serve as a surrogate for another (e.g.,
Prendergast et al. 1993, Su et al. 2004, Davis et al.
2008). If our goal is conservation of all of these
taxa, it is imperative to know that ants, butter-
flies, and leaf beetles are each responding to
different components of land-use legacies. Virtu-
ally all grassland restoration projects are influ-
enced by some type of land-use legacy, yet rarely
are such legacies taken into consideration when
evaluating restoration success. Whether these
legacies are acknowledged or not, they may be
having significant effects—even more significant
than the current management being applied.
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SUPPLEMENTAL MATERIAL
APPENDIX A

Table Al. Characteristics of study tracts in the Grand River Grasslands of Iowa and Missouri.

Grazing history Previous Tract area
Treatment Tract name Remnant history (2003-2005) pre-treatment fire (ha)
Burn-only Kellerton Tauke Prairie restorationt None 2003 32.4
Burn-only Pawnee Prairie remnant None 2005 21.8
Burn-only Richardson Prairie remnant None 1994 or earlier 15.6
Burn-only Ringgold North Prairie remnant None 2004 15.4
Graze-and-burn Gilleland Prairie remnant Cattle grazing 1994 or earlier 31.2
Graze-and-burn Lee Trail Road Prairie remnant None 2004 34.0
Graze-and-burn Pyland West Prairie remnant Cattle grazing 1994 or earlier 17.8
Graze-and-burn Sterner Prairie restorationt None 1994 or earlier 32.4
Patch-burn graze Ringgold South Prairie remnant Cattle grazing 2003 32.4
Patch-burn graze Kellerton North Prairie restorationt None 2004 32.4
Patch-burn graze Pyland North Prairie remnant Cattle grazing 1994 or earlier 25.3
Patch-burn graze Pyland South Prairie remnant Cattle grazing 1994 or earlier 22.7

+ Prairie restorations were restored from croplands between 1980 and 2004.

APPENDIX B AppenDIX C
Table Bl. Codes for ant scientific names used in Table C1. Codes for butterfly scientific names used in
community ordination (Fig. 3). community ordination (Fig. 4).

Code Scientific name Code Scientific name
CAAM Camponotus americanus ~ BOBE Boloria bellona
FOEX Formica exsectoides CENE Celastrina neglecta
FOIN Formica incerta CEPE Cercyonis pegala
FOMO Formica montana CHGO Chlosyne gorgone
FOSU Formica subsericea COEU Colias eurytheme
LAAL Lasius alienus COPH Colias philodice
LANE Lasius neoniger CUCoO Cupido comyntas
MOMI Monomorium minimum  DAPL Danaus plexippus
MYAM Myrmica americana EPCL Epargyreus clarus
SOMO Solenopsis molesta JuCcoO Junonia coenia
TASE Tapinoma sessile LYDI Lycaena dione
TEAM Temnothorax ambiguus LYHY Lycaena hyllus
TEPE Temnothorax pergandei PAPO Papilio polyxenes

PHTH Phyciodes tharos
PIRA Pieris rapae
POOR Polites origenes
POPE Polites peckius
POTH Polites themistocles
POPR Pontia protodice
SATI Satyrium titus
SPCY Speyeria cybele
SPID Speyeria idalia
THLI Thymelicus lineola
VAAT Vanessa atalanta
VACA Vanessa cardui
VAVI Vanessa virginiensis
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DEBINSKI ET AL.

APPENDIX D

Table D1. Codes for leaf beetle scientific names used in
leaf beetle community ordination (Fig. 5).

Code Scientific name
ANLA Anomoea laticlavia
BALI Bassareus lituratus
BRMA Brachypnoea margaretae
CATH Capraita thyamoides
CETR Cerotoma trifurcata
CHSP Chaetocnema spp.
COBR Colaspis brunnea
CRVE Cryptocephalus venustus
DIBA Diabrotica barberi
DICR Diabrotica cristata
DIUN Diabrotica undecimpunctata
EPSP Epitrix spp.

EXCA Exema canadensis
GLSP Glyptina spuria
LESA Lexiphanes saponatus
LOSP Longitarsus sp.

OPAM Ophraella americana
orco Ophraella communa
OPCR Ophraella cribrata
ORCO Orthaltica copalina
PAAT Pachybrachis atomarius
PAOT Pachybrachis othonus

PASE Paria sexnotata
PATH Paria thoracica
PHCR Phyllotreta cruciferae
PHZI Phyllotreta zimmermani
RHSP Rhabdopterus sp.

TRVI Trirhabda virgata
ZYSU Zygogramma suturalis
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